Group3 0xF4 EECS470 Final Project Report

Jingru Hou, Mathew Whittlesey, Shiyu Wu, Tianyu Qiao, Yujia Xie
Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor
{hjingru, tmwhitt, shiyuwu, giaotian, yujiaxie} @umich.edu

Abstract—In this paper, we are presenting the MIPS R10000
2-way superscalar processor which our group has developed over
this semester. We first discussed, wrote the top level module and
designed the top level diagram together. Then we assigned each
team member to work on different submodules, and after two
weeks, we integrated different stages. After milestone two, we
designed and implemented the memory system with LSQ, and
non-blocking 2-way set associative write-back data cache. Besides
that, we implemented several different branch predictors and
compared the accuracy of them. The last two weeks were spent on
optimization to minimize clock period and CPI. We reconstructed
several modules to shorten the critical path. In this paper, we will
elaborate on our project design, testing procedures, and optional
features to improve our processors performance.

I. INTRODUCTION

We were tasked with creating an out-of-order pipelined
processor using SystemVerilog for EECS 470 final project.
Specifically, we were required to implement an instruction
and data cache, dynamic branch prediction including a branch
target buffer (BTB) and a predictor, into an out-of-order pro-
cessor with a design of our choosing. We chose to implement
a 2-way superscalar MIPS R10K style processor with many
additional features, such as a tournament predictor and a
dependency-based reservation station. Our processor operates
on a subset of the Alpha64 instruction set architecture outlined
by the EECS 470 staff. This report details the design of the
system, its performance against benchmarks, and our testing
strategies to ensure the correctness of our processor.

II. DESIGN

The high level architectural diagram of our design is shown
in Fig 1.

The following is an in-depth explanation of each stage of
our processor.

A. Fetch Stage

Since we were 2-way superscalar, our fetch stage outputs
two instructions. If either instruction is ready, it will be sent
to the instruction buffer, as it is possible that we discard the
second instruction. The next PCs are determined by the branch
predictor.

1) Icache: We implemented a non-blocking direct mapped
Icache with prefetching capabilities. Direct mapping was used
since instructions often execute sequentially, however if there
are many branches in the code this could cause a higher miss
rate. First, the cache requests the addresses from memory that

the fetch stage is asking for. Once the request is sent, the
next in-order addresses are also requested from memory. Once
either the next prefetch address is a cache hit or 20 prefetches
have occured, prefetching will stop. If the fetch stage asks for
an address that is a cache miss but has already been requested
by prefetching, the cache will simply wait for the response.
Additionally, a victim cache is used alongside the instruction
cache. Our victim cache is direct-mapped and contains four
entries. If the victim cache has an entry that is being requested,
it will swap data with the main cache. If the main cache is
evicting an instruction, the victim cache will store it.

2) Branch prediction: The high level structure of the branch
prediction is shown in Fig.2.

The main components involve Predecoder, Direction Pre-
dictor (DIRP), Branch Target Buffer (BTB), Return Address
Stack (RAS), and Branch Prediction Controller.

Given current PCs and fetched instructions, the instructions
will first go through the pre-decoder and be -classified
into 8 different categories {COND_DIRECT_BR_INST,
UNCOND_BR_TINST, UNCOND_BSR_INST,
UNCOND_RET_INST, UNCOND_JMP_INST,
UNCOND_JSR_INST, UNCOND_JSR_CO_INST,
NON_BR_INST}. Different policies will be used to handle
instructions in different categories, which are summarized
below.

i) COND_DIRECT_BR_INST: Use DIRP to predict the
direction. If the branch predicted taken, directly calcu-

o8 Arch.
Free
List pan
Table
Insn Buffer ROB

CDB —>

Physical

File

|€—CDB

ults Load FUs Store FUs
V.‘W VAV °

Fig. 1. Block diagram of our 2-way superscalar MIPS R10K OoO processor

ALUs

7 =
. DIRP v BTB m

Branch prediction controller

A
Discard

{

Instruction

Fig. 2. Block diagram of our Branch Predictor

late the target branch PC using fetched instructions and
current PCs, instead of querying BTB. Else, use PC+4.

il) UNCOND_BR_INST: Directly calculate the target branch
PC using fetched instructions and current PCs.

iii) UNCOND_BSR_INST: Similar to UNCOND_BR_INST,
further push PC+4 into RAS.

iv) UNCOND_RET_INST/UNCOND_JMP_INST: If RAS
not empty, pop Top of Stack(TOS) PC of RAS. Else if
BTB hit, use target address from BTB. Else, use PC+4.

v) UNCOND_JSR_INST: Push PC+4 onto RAS. If BTB hit,
use target address from BTB. Else, use PC+4.

vi) UNCOND_JSR_CO_INST: First pop TOS of RAS, then
push PC+4 onto RAS. If RAS not empty, use TOS of
RAS. Else if BTB hit, use target address from BTB. Else,
use PC+4.

Besides that, we also implemented three different DIRPs:

i) Bimodal predictor with 2-bit saturation counter

ii) Gshare predictor with 2-bit saturation counter

iii) Tournament predictor combing Bimodal and Gshare pre-
dictor

We found that the size of DIRP and the initialization of
the counter will affect the prediction accuracies, which will
be covered in more details in Analysis part.

For RAS, in order to handle the program involving very
long recursion calls, when a new PC is pushed into a full
stack, the bottom item in the stack will be dropped. When a
misprediction happens, some PCs in the stack are speculatively
pushed into and should not exist. To simplify our design, we
decide to pop all the items from RAS upon a misprediction.

Since we implemented the 2-way superscalar feature for our
project, we use the simplest way to handle the issue of multiple
branch predictions. When the first instruction is predicted to
take the branch, the second instruction will be discarded and
thus will not be sent into the instruction buffer.

3) Instruction Buffer: The instruction buffer decouples the
memory system and the OoO pipeline and allows instructions
to be fetched even if they are not ready to dispatch. This helps
when cache misses occur and the fetch stage is waiting on
memory, allowing instructions to continue to be dispatched.
The instruction buffer holds 32 instructions, along with their
next PC and branch prediction information.

B. Dispatch Stage

1) Reorder Buffer: Our Reorder Buffer (ROB) contains 32
entries, storing the instruction, registers used, and the branch

prediction information. Entries are allocated to the tail of the
ROB from the instruction buffer, and up to two entries can be
retired from the head each cycle.

2) Dependency-based Reservation Station: We imple-
mented a dependency-based reservation station[1] to optimize
our design in term of both CPI and clock period. This design
greatly simplifies the issue selection logic when multiple
instructions are ready at the same time. Depending on the
testbench, our CPI either goes up or goes down. A more
detailed performance analysis will be described in section IV.

The dependency-based reservation station consists of 4 First
In First Out(FIFO) queues and each queue can contain up to
4 instructions. Only the instruction at the head of the queue
will be issued when they are ready. A 4-2 priority encoder is
used for selecting the issued instructions. When an instruction
is dispatched, it can go into either one of the four FIFOs based
on its source register producer. This is implemented by adding
a few new hardware in our design and a steering cloud before
the instruction enters the reservation station.

First, we will need a new column in the map table to
keep track of the producer instruction. This producer update
logic is similar to updating T and Told, but now the ROB
index is updated instead. Also, we will need a new structure
called the reservation table inside the reservation station. It
is indexed by the physical registers and has a one-bit field
for each physical register to record the ready status. When
an instruction enters the reservation station, the ready bit of
the product physical register in reservation table is cleared.
Similarly, when a tag is broadcasted from the Common Data
Bus(CDB), the ready bit is set.

The reservation table greatly reduces the cost of the Com-
mon Data Bus(CDB) in term of the circuit delay. A con-
ventional centralized reservation station requires the tag to
be broadcasted to 16 different instructions if we keep the
same windows size, which is a very high fan-out net and
can potentially become the bottleneck of the processor. In our
design, only the instructions at the head of the FIFO queue will
need to be broadcasted, and the later instructions will look up
for the register ready status in the reservation table. That means
a new delay to look up the table will be added to the issue
logic . It is worth mentioning that looking up the reservation
table ready is actually a relatively cheaper approach comparing
to broadcasting. In our design, we have 64 physical registers,
which means our reservation station will only be 8-bytes large.
Four instructions looking up an 8-bytes structure, two bits for
each is actually very cheap.

On the other hand, the simplified issuing logic means we
have less scheduling flexibility. This can potentially affect the
CPI for specific test benches. The solution is to add an in-
struction steering cloud. With the instruction steering cloud,
we are able to achieve a relatively close CPI performance
comparing to the conventional approach. The steering cloud
is a pure combinational module responsible for steering the
input instructions. The function of the steering logic can be
described as the Algorithm 1 shown below.

From algorithm 1, we can learn that the instructions in
the same dependency chain will go into the same FIFO.
This means instructions that are not at the head of the FIFO

for each dispatched instruction I do

if the operand A source register is not ready, and the
instruction producing that register is at the tail of
the FIFO queue F, and F, is not full then
| assign I to F,

else if the operand B source register is not ready

then
| do similar steering

else if there is at least one empty FIFO then
| assign I to one of them

else
| Stall
end

end
Algorithm 1: Algorithm for steering logic

will never be ready to issue since the instruction before
them always blocks them by data dependency. Through the
steering logic, we can further exploit the reservation station
potential. Theoretically, this approach will achieve similar CPI
to the conventional approach if all the instructions in the
issue window form less than 4 dependency chain. In our real
experiment, we achieve a no-worse CPI comparing to the
conventional approach.

To wrap up, we were able to achieve both a better clock
period and a better CPI after using the dependency-based
reservation station. For the detailed analysis of performance,
please refer to part IV.

3) Instruction Decoder: We used the same decoder from
project 3.

4) Free List: Normal functionality.

5) Map Table: Normal functionality. The only special case
is to handle instructions with non destination register, such
as Store, Nop. For these instructions, we will set the old tag
Told sent to the ROB and RS to be the same as the new tag
T obtained from the free list.

6) Architectural Map Table: Normal functionality.

7) Physical Register File: To support 2-way superscalar,
we implemented a PRF with 4 read ports and 2 write ports,
which allows internal value forwarding.

C. Execute Stage

The execute stage consists of eight Functional Units: 2
ALUs for normal arithmetic operations except multiplication,
2 four-stage pipelined multipliers for multiplication, 2 Load
functional units for load instructions, 2 Store functional units
for store instructions. Branch instructions are calculated using
the normal ALUs. The instructions are issued from the heads
of the RS FIFO queues. It is worth mentioning that our normal
arithmetic operation can be finished in zero cycle due to the
simplified broadcasting and issuing logic in reservation station.
The reservation station and our zero-cycle execution works
well with each other and greatly improves our CPI. For more
detailed performance analysis, please refer to part I'V.

1) Store Queue: The size of our store queue is 7. There
are actually 8 entries, but we only allow at most 7 stores in
the queue. This makes it much easier for the empty logic. For

all dispatched instructions, the SQ always gives out its tail,
which is used for the age logic. The SQ also takes information
from the execute stage and uses that for the store data and
address. We have store to load forwarding in our SQ. For
load instructions, it would search through the queue until the
oldest unknown store to see whether there is a load hit.

2) Dcache: We implemented a non-blocking 2-way cache.
Two way associativity is doing better than direct mapping for
D-cache due to the temporal locality of cache. The strategy for
setting the LRU bits is the key part to improve the performance
and we decide to give load instructions the priority, then
store instructions, and finally, the data coming back from
memory. For the dcache controller which handles the multiple
outstanding cache misses, we use the MSHR and we integrate
this part into the pipeline module. Besides, if a load instruction
comes and have a same address as the a previous load
instruction which is in processing, we will follow the data
comes back from memory to both load instructions directly.

D. Complete Stage

We have a 2-wide Common Data Bus (CDB). Since we have
8 different functional units in the execution stage, we add a
8-2 priority selector to select two completed instructions for
broadcasting.

IIT. TESTING / VERIFICATION

The following explains the process we did testing and
verification for our processor.

For testing, we have a random testcase generator which will
generate assembly codes consisting of load, store, mult and
branch instructions with different probabilities. Most branch
instructions are forward branches to avoid infinite loops.
Besides the random testcases, we also wrote testcases for
different algorithm to test specific functionalities and compiled
them using Decaf470 compiler, such as the program of Hof-
stader sequence to test RAS, a matrix multiplication program
to test ALUs and multipliers.

We also have unit testbenches for each module, though they
may not work at this point since we have changed the interface
when connecting modules together. However, when we were
trying to implement the modules the first time, we tested each
module with edge cases to make sure it functions correctly.

We have a bash script which runs all the testcases and
compares the writeback value and memory value with the
results we obtain using project 3 files. We use it to verify the
correctness of our project and do the regression test. The test
script will print the CPI for each test case. It is able to test the
correctness and CPI of synthesis results as well. Besides that,
the script could also automatically save the synthesis results
after the synthesis process with a unique hash tag. This greatly
simplifies our testing and verification process.

IV. ANALYSIS

The following provides some analysis on the overall per-
formance of our processor and how certain main features we
have implemented affect the performance. Our team provided
analysis on overall CPI, branch prediction result and its effect,
dependency-based reservation station and its effect.

A. Overall CPI Analysis

We test our processor on the given public testcases and
the average CPI we achieve is 1.46 along with 8ns for clock
period.

The following chart summarizes the performance on differ-
ent public test programs.

CPI

0

D o O LS N > @
\.v?" \ef} \0“g cPQﬁ \"ng;\'f \"‘\:o':q' § §° & .'Q\‘:&\\é‘g @\\e @@&4‘5@ ‘J&é"g
PR ’ o’ o7 & s P A
é,af" & S & o R ?
[Q’b

Fig. 3. CPI for different public test programs

B. Branch Prediction Analysis

As mentioned above, we implemented three different
DIRPs: i) Bimodal predictor with 2-bit saturation counter, ii)
Gshare predictor with 2-bit saturation counter, iii) Tournament
predictor. The prediction accuracy of each predictor on non-
trivial testcases is shown below.

® Bimodal w/size 16, weak-taken init ® Gshare w/size 16, weak-taken init ® Tournament

1

0.75

L
o

0.25

DIRP Prediction Accuracy

>
e E O E o é&* S & S S
s ¢ e & o & S & E &
N & < & N @
< & &
Q'b

Fig. 4. Prediction accuracy for each DIRP

From the chart above, we could see that the performances of
all three predictors on the public testcases are relatively good.
All three could achieve accuracies above 80%, with Bimodal
82.6%, Gshare 86.8%, and Tournament 86.4%.

Since Tournament predictor is a meta predictor which
utilizes both local Bimodal and global Gshare predictor, its
performance is more balanced across all the testcases. For
example, it performs relatively well on both even_long
and insertion, in which either Bimodal or Gshare would
perform slightly poorly.

Another important factor we found related to the perfor-

mance of DIRP is the initial value of 2-bit saturation counter.
The following chart summarizes the performance of Gshare
with size 16 using different initial values.

B Gshare with strong-not-taken init ® Gshare with weak-not-taken init Gshare with weak-taken init

® Gshare with strong-taken init

1

o
«

DIRP Prediction Accuracy
o
N
]

Fig. 5. Prediction accuracy for Gshare with different initial values

From the result, we could see that Gshare with
Weak-taken or Strong-taken gives much better per-
formance than initializing with Weak-not-taken or
Strong-not—taken. We believe that the main reason is
that in the most test programs, the conditional branch will
be taken considering the For loop and While loop in users’
programs. Besides that, since most test programs are not
quite long, it may take too much time for the predictor with
Weak-not-taken or Strong-not-taken to warm up,
and the prediction accuracy has already been hurt.

Another influencing factor of DIRP is its size. Fig.
demonstrates the effect of size on prediction accuracy.

B Gshare w/size 8 B Gshare w/size 16 ® Gshare w/size 32 B Gshare w/size 64 B Gshare w/size 128

0.5

DIRP Prediction Accuracy

Fig. 6. Prediction accuracy for Gshare with different size

Intuitively, Gshare predictor with larger size is likely to give
a better performance since it exploits the global correlation
more thoroughly. However, this is not the case in our analysis.
The reason could be similar to the reason for initial values.
Given the fact that our test programs are not large enough,
large predictor size may take too long to warm up, and
eventually hurt the performance.

Another interesting fact we found was when we increased
the size of BTB from 32 to 128, the performance on Objsort
is much better, which is shown in Fig. [7}

® Tournament w/ BTB size 32 ® Tournament w/BTB size 64 ® Tournament w/ BTB size 128

4

CPI

Fig. 7. CPI with different BTB size

Notice that besides Objsort, the performance is almost
the same with respect to BTB size. As for Objsort, we
believe the main reason for improvement is that given the
policy of JSR instructions mentioned above, it resolves the
conflict between multiple JSR instructions. For example, the
JSR on line 22 and JSR on line 54 in Objsort may have
conflict in BTB if the size is too small. Increasing BTB size
to 128 could well solve this problem.

Overall, the following chart summarizes the improvement
brought by branch prediction.

L withBP ®

without Iways not taken

CPI

Fig. 8. CPI with BP vs. CPI without BP (always not taken)

We could see that using branch predictor, our performance
will improve by 121.43%, with respect to the baseline pro-
cessor which uses always-not-taken policy. This illustrates the
effectiveness of our branch predictor.

C. Dependency-based Reservation Station Analysis

The following chart demonstrates the comparison of CPI be-
tween normal centralized reservation station vs. dependency-
based reservation station.

One thing we find interesting is that when we increase the
depth of steering RS form 4 to 8, the performance becomes

6 | Centralized RS
® Steering RS 4x4
Steering RS 4x8

CPI

&S0 &
\z?\ \vz.'} \0‘\Q e&‘\ \0(9 & \°Qq
& PSPV
& A

S
&

Fig. 9. CPI for centralized RS vs. dependency-based RS

worse. We think that the main reason is that some garbage
instructions after halt come into the RS and issuing of illegal
instructions will block the issuing of valid instruction.

Another interesting thing is that dependency-based reserva-
tion station not only reduces our clock period (From 8.5ns
to 7.8ns) due to the simplification of issuing logic, but also
improves the CPI by 19.76%. One potential reason could
be that for centralized RS, the issue policy may not select
the best instruction to execute. For example, RS may issue
the instructions after a branch instruction first. But if that
branch is mispredicted, these instructions are useless and it
will eventually hurt the performance. On the other side, for
dependency-based RS, since its issuing logic is simpler, it
could potentially prevent these bad situations.

Despite the comparison between centralized reservation
station and dependency-based reservation station, we also
conducted some experiment to carry out the best depth(FIFO
length) and width(FIFO number) of the dependency-based
reservation station. we experiment with different settings in-
cluding W4*D4, W4*D8§, W2*D§, W8*D2 , and W8*D4. A
quick conclusion is that W4*D4 achieve the best CPI-clock
period balance. To keep the report tidy, we only represent a
few interesting subset of data here, which includes W4*D4,
W4*D8, W2*D8 and W8*D2.

Steering RS 4x4, Steering RS 4x8, Steering RS 8*2 and Steering
RS 2*8

B Steering RS 4x4 [Steering RS 4x8 Steering RS 8*2 [l Steering RS 2*8

test_progs

Fig. 10. CPI for different RS parameters

First of all, when comparing the W4*D4 and W4*D8§, we

discovered that the depth of the reservation station can not
affect the CPI on all test bench, this is due to the fact that
our ROB is only 32 large. The W4*DS8 reservation station can
contain up to 32 instructions and that is the same as the ROB
size. That makes it meaningless to increase the depth to 8.

For the same windows size 16, including
W4*D4,W8*D2,W2*D8. The W4*D4 is also the most
balanced one. It achieves a decent CPI on all test benches.
For the W8*D2 version, which is quite good as well, but due
to the fact of the increased issuing width, we were not able
to reach the same clock period and we choose not to use it.
For the W2*D8 version, the standard deviation is too high,
so we also give up that one.

In conclusion, the W4*D4 is the most reliable version in
terms of both CPI and clock period and is included in out
final submission.

D. Functional Units Number Analysis

Fig. [TT] shows the CPI performance regarding to different
numbers of functional units. On average, reducing the number
of ALUs to 1 is an obviously worse choice, and it helps
only a little to increase the number of ALUs to 4. The
increasement in the number of ALUs reduces the situations
that the issues get stuck due to structural hazards in ALUs. The
reduction of multipliers doesnt cause much penalty because
the multiplications appear not so frequently in most of the
programs.

6 W A2
MULT 2

LD 2

W AL 4
MULT 2
ST 2

4 D 2

ALU 4
MULT 1

LD 2

ALU 1
MULT 1
ST 1
LD 2

B AL 2
MULT 1

CPI
|

LD 2

0

Fig. 11. CPI for different numbers of functional units

V. GROUP DYNAMICS

Jingru Hou (18%): Pipeline, ROB, Architecture map table,
Store queue

Mathew Whittlesey (17%): Pipeline, Icache, Prefetch

Shiyu Wu (20%): Pipeline, Branch prediction, Victim cache,
Reservation station

Tianyu Qiao (25%): Except the Branch Prediction and
Prefetch.

Yujia Xie (20%): Pipeline, Map table, Dcache and ROB

VI. CONCLUSION

We implemented a MIPS R10K style 2-way superscalar
out-of-order processor in SystemVerilog. Our processor uses
a subset of the Alpha64 ISA, and incorporates a number
of additional features discussed in this report. Our processor
synthesizes with a clock period of 8ns, and achieves an average
CPI of 1.46 across the public test cases provided for us. We
utilized a random test case generator along with unit tests in
order to rigorously validate the functionality of our processor.

VII. ACKNOWLEDGEMENT

We are greatly thankful to Prof. Ronald Dreslinski, teaching
assistants Jielun Tan, James Connolly, and Yichen Yang. We
can not make it without the help from all of you.

VIII. APPENDIX
A. Feature Table

The following table summarizes the features we have im-
plemented.

Feature Included | Comments

MIPS R10K OoO Yes MIPS R10K Style Out of
Order execution

2-way Superscalar Yes Two issues and two retires
per cycle

Bimodal predictor w/BTB Yes Use 2-bit saturation
counter

Gshare predictor Yes Use 2-bit saturation
counter

Tournament predictor Yes Combine Gshare and Bi-
modal predictor

Return Address Stack Yes Drop the bottom item if
full

Dependency-based Reser- Yes 4 FIFO buffers with steer-

vation Station ing logic

More complex issue pol- No No improvement for CPI

icy

Multi-bank RS No No improvement for clock
period

Store/Load forwading Yes Single store queue

Multiple outstanding load Yes

missed

Next-line prefetching for Yes With prefetch size 20

I$

Directly-mapped victim I$ Yes

2-way associative D$ Yes

Regression test Yes Run testcaes and compare
with project3

Random testcase genera- Yes Mainly for testing ALU

tor and LSQ

TABLE

LIST OF OUR IMPLEMENTED FEATURES, ALONG WITH ANY UNIQUE FACTS

B. Specification Table

The following table summarizes the parameters and speci-

ABOUT THEM

fications of our final submitted design.

Parameter Value
ROB size 32
RS size 4FIFO queues, 4 instructions/FIFO queue
SQ size 7
Branch predictor Tournament predictor
BTB size 128
Gshare predictor size 16
Bimodal predictor size 16
RAS size 16
Freelist size 32
architectural register 32
physical register 64
ALU 2
multiplier 2
stage of multiplier 4
load functional unit 2
store functional unit 2
Width of CDB 2
Instruction buffer size 32
Prefetch size 20
Icache 256 bytes in total with 32 8-byte blocks
Victim icache 32 bytes in total with 4 8-byte blocks
Dcache 256 bytes in total with 32 8-byte blocks
TABLE T

PARAMETERS AND SPECIFICATIONS OF VARIOUS PROCESSOR STRUCTURES

REFERENCES

[1] Palacharla, Subbarao, Norman P. Jouppi, and James E. Smith.
Complexity-effective superscalar processors. Vol. 25. No. 2. ACM, 1997.

	Introduction
	Design
	Fetch Stage
	Icache
	Branch prediction
	Instruction Buffer

	Dispatch Stage
	Reorder Buffer
	Dependency-based Reservation Station
	Instruction Decoder
	Free List
	Map Table
	Architectural Map Table
	Physical Register File

	Execute Stage
	Store Queue
	Dcache

	Complete Stage

	Testing / Verification
	Analysis
	Overall CPI Analysis
	Branch Prediction Analysis
	Dependency-based Reservation Station Analysis
	Functional Units Number Analysis

	Group Dynamics
	Conclusion
	Acknowledgement
	Appendix
	Feature Table
	Specification Table

	References

