
1

CS394R Final Project Report
Jinde Yang, Shiyu Wu

Department of Computer Science
University of Texas at Austin

jinde.yang97@gmail.com, swu@cs.utexas.edu
jy23444, sw37625

Abstract—We utilize and extend the previous work on deep
reinforcement learning to teach the agents to play Pong and
Tennis Atari games directly from high-dimensional sensory input.
We investigate the impact of action space size of Tennis game on
the agent training process, in particular, the convergence speed.
Furthermore, we propose a image-translation based transfer
learning method of training Tennis-playing agents from Pong-
playting agents. We achieve a large convergence speed gain by
a small amount of transfer learning pretraining. Project Github
repository1 and the project video2 are available for review.

I. INTRODUCTION

Building autonomous systems and training the agent with
a higher level understanding of the visual world is a long-
standing challenges and long-term goals in the field of Ar-
tificial Intelligence (AI). In the meanwhile, most recent ad-
vances in neural networks based deep learning have con-
tributed to several significant breakthroughs in the domains
including computer vision, machine translation and time series
prediction. These deep learning methods utilize a range of
neural network architectures, such as convolutional neural
networks, multilayer perceptrons, and are able to extract high-
level features from raw sensory data, such as image pixels,
text, and etc. More recently, the deep learning methods have
been combined with reinforcement learning (RL), enabling it
to scale to problems that were previously intractable, such
as learning to play video games directly from pixels [1],
mastering Go to defeat a human world champion [2].

Deep reinforcement learning, the deep learning based re-
inforcement learning, demonstrates several advantages over
traditional methods in the context of learning to control the
agent using the visual inputs. Traditional methods heavily
depend on the hand-crafted features, while deep reinforcement
learning is able to extract the high-level features with stronger
generalizability. On the other hand, the Deep Q-Network
algorithm (DQN) proposed in [1] is capable of handling the
context in which the rewards are delayed for a long time after
the action is executed.

However, the successful applications of deep reinforcement
learning are still limited by many factors, among which the
data efficiency is one big concern. Recently, transfer learning
has drawn a lot of attention in deep learning domain given the
enormous resources required to train deep learning models
or the large and challenging datasets on which deep learning

1Github repository: https://github.com/mirageyjd/dqn-transfer
2Video URL: TODO

models are trained. The proper application of transfer learning
could become effective in the domain where data efficiency is
the bottleneck, such as some of robotics applications.

In this paper, we utilize and extend the Deep Q-Network
(DQN) algorithm [1] to train the agent to play Pong and Tennis
games in the simulated Atari environment based on OpenAI
Gym framework [3]. Furthermore, we investigate the methods
of performing transfer learning from Pong-playing agents to
Tennis-playing agents.

We train and evaluate the models based on our proposed
approaches. The agents trained with standard DQN algorithms
are able to greatly outperform the opponents after a certain
number of training steps. Our results also suggests that reduc-
ing the action space of Tennis game enables the agent to master
the game more quickly. In the end, we show that with transfer
learning, only a small amount of pretraining using well-tuned
Pong model on Tennis model could give a relatively large
improvement in terms of convergence speed.

II. BACKGROUND

A. Reinforcement Learning

Reinforcement learning (RL), with the scope of machine
learning, is a computational method to automatize goal-
directed learning through interaction with environment [4].
Specifically, an agent learns to act with an environment, to
maximize a reward signal returned by the environment. In
general, a reinforcement learning task is formulated as a
Markov Decision Process (MDP), which is a discrete-time
stochastic model for optimizing sequential decision making.

We could define an MDP for RL as a tuple M =
(S,A, p, r, γ), where S is the set of state s of environment, A is
the set of action a of agent, p(st+1 = s′|st = s, at = a) is the
state-transition function depending on environment dynamics,
r(s, a) = E[rt|st = s, at = a] is the reward function, and γ
is the discount factor. A wide range of reinforcement learning
algorithms seek to maximize return rather than reward. Return
R is usually defined as

Rt = rt + γ · rt+1 + γ2 · rt+2 + · · ·+ γT−t · rT ,

where T is the terminal time step in episodic case.

B. Atari Environment

We formulate our target application scenario in which an
agent learns to play Pong and Tennis games on Atari 2600

https://github.com/mirageyjd/dqn-transfer
TODO


2

platforms as one finite MDP. In particular, the player agent in-
teracts with an environment ξ, which is the Atari environment
emulator in our application, with a sequence of observations,
rewards when the agent performs a sequence of actions. At
each time-step, the agent is able to observe the raw video
game frame from the emulator, represented as xt ∈ Rd, one
flatten vector with each element corresponding to each pixel
value for each color channel in the image frame. Notice that
the agent is only able to observe the raw output video game
frame, while the internal state of the game is non-observable to
the agent, which requires agent’s inference. At each time-step,
given the current observation from the emulator, the agent is
able to pick one action at from the set of legitimate actions at
this time-step, At = {1, 2, ..,K}. The selected action at will
be passed into the Atari game emulator, modifies the internal
state of the game, and outputs the new observation xt+1, and
corresponding rewards rt+1 related to the game score back to
the agent.

In general, the rewards rt and the game score depends not
only on the current observation and action, but also on the
whole prior sequence. For example, the agent may only get the
positive reward of winning 1 point after hitting the ball back
and forth several times in the tennis game. Thus, we formulate
the sequence st = x0, a0, x1, a1, ...at−1, xt as one state in
MDP process. The MDP process is finite in the sense that
both the Pong and the Tennis will eventually terminate with
one player winning the point, while the opponent losing the
point. This formulation leads to a sequential decision process
in the sense that the agent needs to select proper action to
perform given the current state, namely the prior sequence.

Further, we formulate the return of our application as nor-
mal discounted return, as many other reinforcement learning
problem formulation. The discounted return at time t is defined
as Rt =

∑T
h=t γ

h−trh, where T is the time-step at which the
game terminates. Our goal here is to teach the agent learn the
best game strategies or policy for maximizing the return Rt

given the prior sequence.

C. Deep Reinforcement Learning and DQN

Inspired by the breakthroughs in computer vision and
speech recognition based on deep neural networks, Mnih et
al. introduced the idea of applying deep neural network to
reinforcement learning, called deep reinforcement learning,
and derive DQN algorithm [1].

DQN is derived from Q-learning [5], an old but simple
off-line algorithm. Q-learning only performs update for state-
action pair on sampling trajectory, but uses bootstrapping for
each update. More specifically, Q-learning samples trajectory
by ε-greedy policy π based on function Q(s, a), and update
Q-value as

Q(st, at)← Q(st, at) + α(rt + γmax
at+1

Q(st+1, at+1)

−Q(st, at))

Q-learning applies a tabular setting (that is, stores Q-values
of all state-value pairs in a table), which is impractical in
tasks with large state space, such as playing Atari games with

image inputs. DQN extends it by introducing a non-linear
approximation of Q function, a deep neural network called Q-
network. Let Q(s, a; θ) denote the Q function approximated
by Q-network with weights θ. We can train Q function by
iteration: optimize it by minimizing the loss function Li(θi)
at each iteration i,

Li(θi) = (yi −Q(s, a; θi))
2, (1)

where yi = r + γmaxa′ Q(s′, a′; θi−1).
Since yi varies from iteration to iteration, Q(s, a) is updated

towards a moving target. Therefore, DQN introduces Target
network Q̂(s, a; θ−), which is updated every C steps, allowing
a stable regression to perform within C steps.

Moreover, DQN utilizes experience replay technique
[6], which holds a large number of recent transitions
(st, at, rt, st+1) in a replay buffer. At each iteration, DQN
trains Q function with a minibatch randomly sampled from
replay buffer. This technique improves the efficiency of up-
dates by reducing the correlation between sampled transition
in a minibatch.

With the above techniques, the loss function in Equation 1
can be rewritten as

Li(θi) =
1

n

n∑
j=1

(yij −Q(sj , aj ; θi))
2, (2)

where yij = rj + γmaxa′
j
Q̂(s′j , a

′
j ; θ
−), and n is the size of

a minibatch.

D. Transfer Learning

Transfer learning (TL) is a machine learning method where
a model developed for a task is reused as the starting point
for a model on a second task. More specifically, as explained
in [7], ”transfer learning and domain adaptation refer to
the situation where what has been learned in one setting is
exploited to improve generalization in another setting”. In
other words, transfer learning is the improvement of learning
in a new task through the transfer of knowledge from a related
task that has already been learned, which is usually adopted
in problems such as multi-task learning and concept drift.

More specifically, the definition of transfer learning can be
formulated in terms of domain and task. As specified in [8],
”The domain D consists of a feature space X and a marginal
probability distribution P (X), where X = {x1, ..., xn} ∈ X .
Given a specific domain, D = {X , P (X)}, a task consists
of 2 components: a label space space Y and an objective
predictive mapping function f(·) (denoted as T = {Y, f(·)})
learned from the training data which consists of pairs {xi, yi},
where xi ∈ X , yi ∈ Y .” Then, given a source domain DS and
learning task TS , a target domain DT and learning task TT ,
transfer learning aims to help improve the learning of the target
predictive function fT (·) in DT using the knowledge in DS
and TS , where DS 6= DT , or TS 6= TT .

There are 3 typical benefits the transfer learning can bring
about for the target task:

1) Higher start. The initial skill (before refining the model)
on the source model is higher than it otherwise would be.



3

2) Higher slope. The rate of improvement of skill during
training of the source model is steeper than it otherwise
would be. In other words, the agent is able to learn faster.

3) Higher asymptote. The converged skill of the trained
model is better than it otherwise would be.

Two commonly used transfer learning approaches in deep
learning includes i) Pre-trained Model Approach, ii) Develop
Model Approach. These two approaches both involve the step
of

1) Select source task and model, where a related predictive
modeling problem and model is chosen.

2) Reuse Model. The model fit on the source task can then
be used as the starting point for a model on the second
task of interest. This may involve using all or parts of the
model, depending on the modeling technique used.

3) Tune Model. Optionally, the model may need to be
adapted or refined on the input-output pair data available
for the task of interest with further training.

The main distinction of two approaches is that Develop Model
Approach involes developing source model step after selecting
the proper source model. Extra steps need to be done for
tailoring the model to be used in the target domain, such as
performing dimensionality reduction. In general, Pre-trained
Model Approach is more widely used in deep learning domain,
and will be our main focus.

III. RELATED WORK

A. Deep Reinforcement Learning

Many of successful applications and scaling of reinforce-
ment learning in recent years were driven by the Deep Q-
Network algorithm (DQN) [1]. It combines the traditional Q-
learning [4] with convolutional neural networks which has led
to great improvements in computer vision, speech recogni-
tion,and etc, and experience relay which eases the training of
deep networks for RL and enables the agent to learn to play
Atari2600 games from raw image pixels.

Our work is built upon DQN algorithm to train the agent
for playing Atari games, and investigate potential methods for
performing transfer learning to similar Atari games. We will
experiment our algorithms on OpenAi Gym [3], a toolkit gen-
eralizing reinforcement learning environment including Atari
Learning Environment (ALE) [9] applied in [1].

B. Transfer Learning in Reinforcement Learning

There have been many works managing to apply transfer
learning techniques in reinforcement learning tasks, such as
[10], [11], [12], [13]. [10] developed the Actor-Mimic method
that trains a multi-task network with assistance of expert
networks from individual games. For TL, they treat the multi-
task network as a DQN, and they transfer all the weights
except the final softmax layer to a new DQN. This leads to
much faster learning on the target task than random weight
initialization. [11] proposed progressive neural network that
applies transfer learning without fine tuning on the source
network, by using the activation of each layer of the source
network as an extra input for the next layer in target network.

TABLE I
SOME DQN HYPER-PARAMETERS

Hyper-parameters value
Observation size (4, 84, 84)
Gray scale True
Pixel value normalization True
Frame skipping 4
No-op max 30
Reward clipping [-1, 1]
Adam α 6.25× 10−5

Adam ε 1.5× 10−4

Target network update frequency 10K
Replay buffer size 1M
Minibatch size 32
Learning start 50K
Exploration ε 1 → 0.1
Discount factor γ 0.99

Different from the previous two works, [12] and [13]
exploited the visual similarities between Atari environment,
taking extended approaches by performing image-to-image
translation alongside with TL. With the recent advancement
of Generative Adversarial Networks (GAN) [14], variants of
GAN, such as CoGAN [15] and UNIT GAN [16], perform
for high-quality unsupervised image-to-image translation. [13]
and [12] both adopted UNIT GAN to overcome visual dif-
ferences between Atari games, but preprocessed raw image
in different ways. Whereas [13] only added a constant noise
to raw image, [12] used a thorough preprocessing, extracting
key features of games by removing background of image and
then turning it into a binary image. Particularly, [12] further
investigates the transferring knowledge between completely
different games by utilizing i) data transfer by pretraining ii)
Continuous data transfer iii) Distillation.

Our work also utilizes UNIT GAN to achieve image-
to-image translation between Pong and Tennis, and applies
modest preprocessing method: only removes the background
of Pong and Tennis. Moreover, we adopt similar transfer
learning technique to i) data transfer by pretraining in [12].

IV. EXPERIMENT SETTING

We proceed with our project in two main phases. In the first
phase, we train the agent on Pong and Tennis Atari games
using DQN separately. In the second phase, we investigate the
possible approach of doing transfer learning from pre-trained
Pong-playing agent to Tennis-playing agent. The details of our
method and experiment settings are included in the following
sections.

A. Training Pong & Tennis Playing Agent with DQN

We follow the general approaches of DQN and experiment
settings as discussed in [1] with some preprocessing variations.
Some specific experiment settings and preprocessing we make
during the experiment are discussed below.

1) Hyper-parameters: The hyper-parameters below are
from [1] unless specified. A list of hyper-parameters is pro-
vided in Table I.

i) The raw Atari frames, which are RGB images with size
210 × 160 pixels, are converted to gray-scale and then



4

TABLE II
NETWORK ARCHITECTURE

Layer characteristics
Convolution layer 1 32 8× 8 filters with stride 4
Convolution layer 2 64 4× 4 filters with stride 2
Convolution layer 3 64 3× 3 filters with stride 1
Hidden fully-connected layer 512 units
Output fully-connected layer #action units

compressed to 84 × 84 pixels by bilinear interpolation.
After that, all pixel values are normalized inside the range
[0, 1]. Each observation from environment, or the input
of Q-network, contains 4 recent frames, and thus the
observation is 4 × 84 × 84 pixel image. As a result,
the size and dimension of observation are significantly
decreased.

ii) Frame-skipping technique proposed in [9] is applied
to reduce computation. The agent select an action on
every fourth frame and repeat it until next selection.
This accelerates the learning process without seriously
affecting the performance of the agent.

iii) Each game, or episode, starts with a random number of
no-ops. The number of no-ops does not exceed 30.

iv) Rewards are clipped to +1 for positive rewards and -1 for
negative rewards to reduce the effect of error derivatives.

v) We use the same network architecture as in [17]. A Q-
network consists of three convolutional layers and two
fully-connected layers (see Table II). Each layer, except
the output layer, is activated by ReLU function.

vi) We use Adam optimizer with learning rate α = 6.25 ×
10−5 and ε = 1.5 × 10−4 as suggested in [17], rather
than RMSProp optimizer.

vii) We utilize a replay buffer of size 1M to break the strong
correlation between consecutive transitions, and trains Q-
network with a random minibatch of size 32 from replay
buffer at each step. Learning is not performed at first 50K
step to ensure sufficient transitions in replay buffer.

viii) For behavior policy, we apply ε-greedy policy, where ε
is linearly annealed from 1 to 0.1 at first million steps,
and remains 0.1 at rest steps.

2) Changing Sides of Tennis: By nature, the Tennis and
Pong games share many similarities with each other. One no-
ticeable difference is that for the tennis game, after one player
wins the game, players will change the sides to continue. In
order to avoid the confusion caused by changing sides and
make it easier for training the agent, we will terminate the
game after finishing one game. In other words, whenever one
player wins the first game, the game will terminate and restart
from the beginning.

3) Action Space of Atari Environment: The Atari environ-
ment provided by Gym provides redundant actions which may
slow down the learning process of agent. 6 actions are provides
in Pong, whereas only 3 actions {NO OP, LEFT, RIGHT}
are valid actions. Hence, we preprocess the environment and
provide a smaller action space including only 3 valid actions.

Tennis is much more complex since it involves 18 actions,
including NO OP, FIRE, moving in 8 different directions as

{LEFT, RIGHT, UP, DOWN, UPLEFT, UPRIGHT, DOWN-
LEFT, DOWNRIGHT}, plus move and FIRE in 8 different
directions. However, move and FIRE have the same effect as
the corresponding move after serving. To reduce action space,
we removes 8 move actions and no-op actions, leaving 9 avail-
able actions for Tennis-playing agent. Moreover, we further
investigate training agent with smaller action space with only
{FIRE, UPFIRE, RIGHTFIRE, LEFTFIRE, DOWNFIRE} 5
actions. The comparison is shown in result section.

B. Transfer Learning from Pong-playing Agent to Tennis-
playing Agent

We further investigate potential methods of performing
transfer learning from Pong-playing agent to Tennis-playing
agent. We adopt the Pre-trained Model Approach which is
similar to the pretraining method proposed in [12]. In partic-
ular, the steps are summarized below.

i) Train the Pong-playing agent using DQN with model M1

ii) Apply model M1 on Pong games. Translate the raw image
from Pong into Tennis. Feed the translated image into
model M2. Optimize M2.

iii) Further train model M2 on Tennis game.
Step ii, or pretrain step, is where we adopt transfer learning

approach. We use the same framework as in standard DQN,
but replace the target network Q̂ with pretrained Pong network
M1. In other words, the behavior policy depends on M1, and
the update target is also computed based on M1. We use a
fixed ε = 0.05 for exploration during 1M pretrain steps, in
order to make full use of pretrained Pong model but keeps a
small amount of exploration.

One big step inside the transfer learning is performing the
translation between Pong images and Tennis images. In order
to achieve the translation, we utilize the UNIT-GAN [16].
UNIT-GAN is one type of generative adversarial networks
able to perform unsupervised image-to-image translation. We
pretrain the UNIT-GAN with Pong images and Tennis images
for the translation. Since UNIT-GAN satisfies the cycle-
consistency property [16], the pretrained model is able to
perform both Pong to Tennis, and Tennis to Pong translations.
However, we will focus on the transfer learning from Pong to
Tennis scenario, which only utilizes part of the UNIT-GAN
model.

Other details of transfer learning are discussed below.
1) Image Preprocessing: In order to make the UNIT-GAN

tranining easier and more efficient, we perform more complex
image preprocessing including removing background, and etc:

i) Pre-calculate the background image by calculating the
mean pixel values across multiple Pong and Tennis video
game frames.

ii) Substract the background image pixel values from the raw
image pixels, and rescale the pixel value to be inside the
range [0, 255].

iii) Crop the game score.
iv) Rotate Pong image by 90 degrees counter-clockwise such

that the player agent controls are at the same side as
Tennis.

v) Turn the image into greyscale.



5

TABLE III
ACTION MAPPING IN TRANSFER LEARNING FROM PONG-PLAYING AGENT

TO TENNIS-PLAYING AGENT

Pong action Tennis action
NO OP FIRE
RIGHT LEFTFIRE
LEFT RIGHTFIRE
NONE UPFIRE
NONE DOWNFIRE

vi) Resize the image to be 84× 84.
vii) Normalize the pixel values to be inside the range [0, 1]

easy for training.
2) Action Mapping: Since Tennis game has a much larger

action space than Pong’s, we consider a simple action mapping
between two games. First, we restrict the action space of
Tennis to be just 5 actions, involving {FIRE, UPFIRE, RIGHT-
FIRE, LEFTFIRE, DOWNFIRE}. Then, we map the action
from Pong to Tennis as in Table III. One noticeable setting
is that there is no mapping to UPFIRE and DOWNFIRE
(that is, these two actions are excluded form pretrain). The
other is that we map RIGHT to LEFTFIRE and LEFT to
RIGHTFIRE, for the reason that after rotating the Pong image
by 90-degrees counter-clockwise, the RIGHT key essentially
moves the player to the left side of the screen.

Intuitively, this pretraining using Pong’s model teaches the
agent how to play the tennis just at the court baseline. Though
the agent will never move back and forth, only moving left
and right on the baseline can still lead to a well-played agent.

C. Evaluation

We follow the evaluation method in [1]. For every 250K
training steps, we evaluate the agent for 125K steps under
an ε-greedy policy with ε = 0.05, by the average reward per
episode. Whereas an episode starting at the end of 125K steps
may have an impact on the average reward, it turns out that
this effect is limited due to i) at the beginning (end) of training
process, the agent wins (loses) very fast, resulting in a large
number of episode during evaluation; ii) in the middle, the
agent and its opponent are neck and neck, which gives an
average reward close to 0.

V. RESULT

A. Training Pong & Tennis Playing Agent with DQN

We train our Pong-playing and Tennis-playing agent based
on the settings mentioned in previous section, with 10M steps
and 25M steps respectively. Fig. 1 demonstrates the learning
curve of standard DQN in Pong and Tennis.

Pong has a tiny aciton space and thus the agent converges
fast at about 4M steps. The agent reaches a final score of
around +18 points, which is slightly lower than the one
presented in [1]. The network model of this agent will be
used as M1 in the experiment of transfer learning.

Tennis has a complex action space, and the agent learns
much slower even with a compressed action space with 5
actions. The learning is unstable in the middle of training,

compared to that of Pong, but converges to a final score of
around +3.8 points. Recalling that we have preprocessed the
Tennis environment to terminate at the end of first game, the
maximum score in a game (episode) is +4. In this sense, our
Tennis-playing agent outperforms its opponent and reaches a
high performance. This agent will be treated as the baseline
of the experiment of transfer learning.

To illustrate the significant improvement of reducing action
space, we compare two agents trained with different size of
action space: one takes 5 actions, while the other takes 9
actions (see experiment setting section). As shown in Fig.
2, smaller action space requires little exploration, and thus
essentially speedup the learning process. Specifically, the per-
formance of agent with 5 actions significantly increases after
9M steps, whereas the performance of agent with 9 actions
starts increasing after 15M steps. Moreover, with careful
design of reduction, agent with 5 actions achieves the same
final performance as the agent with 9 actions. A reasonable
explanation is that since the speed of tennis is slower than that
of players’ movement, the removal of diagonal movement has
little impact on players’ moving capability. To conclude, our
reduction on action space on Tennis successfully speedup the
learning without deduction on final performance.

B. Transfer Learning from Pong-playing Agent to Tennis-
playing Agent

We use the original author’s implementation of UNIT-
GAN to train the image translation from Pong to Tennis. We
manually prepare the datasets on our own. More specifically,
we prepare 3K preprocessed 84 × 84 images for Pong and
Tennis respectively, in which 2.1K images are used as training
sets, while the remaining 900 images are used as test/validation
sets. Since the resized image is only 84× 84, we believe that
3K images are enough to cover different variations of the game
settings. We further train the UNIT-GAN on TACC for 450K
steps. The result is shown in Fig. 3.

Though the UNIT-GAN may not generate very meaningful
images in some cases, in most cases, the generated Tennis
images are relatively decent, reflecting the relative positions
of players and the ball. We consider this to be enough for
doing transfer learning.

Then, we train the Pong-playing agent model M1 using the
DQN algorithm with the same settings as the previous section
for 10M steps.

Further, we pretrain the Tennis-playing agent model M2 by
applying model M1 on Pong, translate the raw image from
Pong into Tennis, and optimize M2 for 1M steps.

Finally, we train the Tennis-playing agent model M2 on
Tennis for another 15M steps using DQN algorithm with ε =
1. In other words, we treat M2 as a brand new model for
training.

Fig. 4 shows the comparison between the transfer DQN and
standard DQN as the change of average reward per episode
with respect to the training steps. We can see that both methods
will eventually converge to around +3.8 points per episode,
meaning that the agent greatly outperforms the opponent given
the maximum reward is +4. However, it is notable that the



6

(a) (b)

Fig. 1. The learning curve of standard DQN in (a) Pong with 3 actions, and (b) Tennis with 5 actions.

Fig. 2. Comparison of Tennis-playing agent trained with 5 actions and 9
actions

transfer DQN reaches the convergence at a much faster pace
around 12M steps, saving around 8M steps compared with
standard DQN, especially given the fact that we only pretrain
the transfer DQN for only 1M steps. Only a small number of
pretraining using the transfer learning on Tennis model could
give a relatively large improvement in terms of convergence
speed.

It is also worth noticing that there is a sequence of ripples
in the initial stage of transfer DQN, which could be the
joint effect of ε-greedy method and pretraining. Through the
pretraining, the agent learns FIRE, LEFTFIRE, RIGHTFIRE
very well, while almost never learns UPFIRE, DOWNFIRE.
With large ε value in the beginning, the agent may sometimes
randomly pick the action leading to poor performance, but may
also exploit {FIRE, LEFTFIRE, RIGHTFIRE}. But whenever
the agent learns {UPFIRE, DOWNFIRE}, the performance

(a) (b)

Fig. 3. (a) Preprocessed pong images. Only relative positions of players and
ball are kept. (b) Translated tennis image from UNIT-GAN based on (a)

will steadily and rapidly improve with a much smoother curve
as shown in Fig. 4.

VI. DISCUSSION

A. Training Pong & Tennis Playing Agent with DQN

i) Whereas our Tennis-playing agents achieves an expected
high converged performance, they oscillate sharply in the
middle of training process, in both 5-action case and 9-
action case. More importantly, we observe that the level
of oscillation in 5-action case is much higher than that in
9-action case. The oscillation may be caused by several
possible reasons: nature of complex Tennis environment;
stochastic factor from ε-greedy policy; removal of diag-
onal movements. Our current experiment cannot lead to
any conclusion on the reason of oscillation. To figure it
out, we may repeat the same experiments several times,
and present the results by average of results from repeated
experiments.



7

Fig. 4. Comparison of Tennis-playing agent trained with 5 actions between
standard DQN and transfer DQN

B. Transfer Learning from Pong-playing Agent to Tennis-
playing Agent

i) We believe that by nature, Pong game is simpler than
Tennis game mostly in the sense that the action space
of Pong is much smaller. We decide to proceed the
transfer learning from simple game to more complex
game. However, it remains an interesting topic to explore
the difference between transfer learning from Pong to
Tennis and from Tennis to Pong.

ii) In the final training of Tennis model M2, we set ε = 1
in the beginning to force the agent to widely explore the
actions, particularly to learn {UPFIRE, DOWNFIRE}. It
remains a question whether we could use smaller ε for
faster convergence speed.

iii) Currently, we use very intuitive action mapping from
Pong to Tennis in terms of moving left, right, and firing.
More interesting action mapping is worth exploring.

VII. CONCLUSION

In this paper, we utilize and extend the Deep Q-
Network(DQN) algorithm to train the agent to play Pong and
Tennis games in the simulated Atari environment based on
OpenAI Gym framework. We adopt the general settings in
[1], but train the agent in Pong and Tennis with less training
steps and smaller action space. In particular, we propose a
action space of size 5 compared to the original one of size
18 in Tennis game, which significantly speedup the learning
process without reducing the converged performance.

Furthermore, we propose a image-to-image-translation
based transfer learning method of training Tennis-playing
agents from Pong-playing agents. More specifically, we pre-
train Tennis-playing agent under Pong environment, with the
assistance of our expert Pong-playing agent and image-to-
image-translation network UNIT GAN. Our results show that
the transfer learning enables the Tennis-playing agents to
master the game at a faster pace with a few pretrain steps.

Due to limited time and resource, We are not able to present
statistical results, as well as further investigate image prepro-
cessing and pretrain technique of transfer learning. Moreover,
we have not extended our approach of transfer learning in
other Atari games. Those would be the possible focus of our
future work.

VIII. ACKNOWLEDGEMENT

We are greatly thankful to Prof. Scott Niekum, Prof. Peter
Stone, and all the teaching assistants for all the insightful
feedback of the project and providing the support of computing
resources on TACC. We can not make it without the help from
all of you.

IX. CODE USAGE & CREDIT

We implemented the baseline DQN algorithm for training
Pong and Tennis playing agent, the image preprocessing, and
all the transfer learning algorithm in Pytorch on our own.

We manually prepared the datasets for training UNIT-GAN
for image translation. The source code of UNIT-GAN was
adopted from the original author’s implementation at https:
//github.com/mingyuliutw/UNIT.

REFERENCES

[1] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,
Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, An-
dreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529, 2015.

[2] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou,
Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. nature, 529(7587):484, 2016.

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv
preprint arXiv:1606.01540, 2016.

[4] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. MIT press, 2018.

[5] Christopher John Cornish Hellaby Watkins. Learning from delayed
rewards. 1989.

[6] Long-Ji Lin. Reinforcement learning for robots using neural networks.
Technical report, Carnegie-Mellon Univ Pittsburgh PA School of Com-
puter Science, 1993.

[7] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning.
MIT press, 2016.

[8] Yuan-Pin Lin and Tzyy-Ping Jung. Improving eeg-based emotion
classification using conditional transfer learning. Frontiers in human
neuroscience, 11:334, 2017.

[9] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling.
The arcade learning environment: An evaluation platform for general
agents. Journal of Artificial Intelligence Research, 47:253–279, 2013.

[10] Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-
mimic: Deep multitask and transfer reinforcement learning. arXiv
preprint arXiv:1511.06342, 2015.

[11] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer,
James Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia
Hadsell. Progressive neural networks. arXiv preprint arXiv:1606.04671,
2016.

[12] Doron Sobol, Lior Wolf, and Yaniv Taigman. Visual analogies be-
tween atari games for studying transfer learning in rl. arXiv preprint
arXiv:1807.11074, 2018.

[13] Shani Gamrian and Yoav Goldberg. Transfer learning for related
reinforcement learning tasks via image-to-image translation. arXiv
preprint arXiv:1806.07377, 2018.

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial nets. In Advances in neural information processing
systems, pages 2672–2680, 2014.

https://github.com/mingyuliutw/UNIT
https://github.com/mingyuliutw/UNIT


8

[15] Ming-Yu Liu and Oncel Tuzel. Coupled generative adversarial networks.
In Advances in neural information processing systems, pages 469–477,
2016.

[16] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsupervised image-
to-image translation networks. In Advances in neural information
processing systems, pages 700–708, 2017.

[17] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg
Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and
David Silver. Rainbow: Combining improvements in deep reinforcement
learning. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018.


	Introduction
	Background
	Reinforcement Learning
	Atari Environment
	Deep Reinforcement Learning and DQN
	Transfer Learning

	Related Work
	Deep Reinforcement Learning
	Transfer Learning in Reinforcement Learning

	Experiment Setting
	Training Pong & Tennis Playing Agent with DQN
	Hyper-parameters
	Changing Sides of Tennis
	Action Space of Atari Environment

	Transfer Learning from Pong-playing Agent to Tennis-playing Agent
	Image Preprocessing
	Action Mapping

	Evaluation

	Result
	Training Pong & Tennis Playing Agent with DQN
	Transfer Learning from Pong-playing Agent to Tennis-playing Agent

	Discussion
	Training Pong & Tennis Playing Agent with DQN
	Transfer Learning from Pong-playing Agent to Tennis-playing Agent

	Conclusion
	Acknowledgement
	Code Usage & Credit
	References

